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Abstract. 
With our growing understanding of the risks of air pollution to human health, air quality forecasting has become a very 

important tool to enable decision-makers to take preventive and corrective measures for current and future policies. In addition, 

accurate predictions of air quality can help predict and mitigate the impacts of wildfres on human health, which have an 

5 increased risk due to anthropogenic climate change. However, errors in air quality forecasts limit their value in decision-making 

processes. Thus, increasing the accuracy of air quality forecasts is of signifcant importance. In this study, we have utilized the 

Community Multiscale Air Quality (CMAQ) modeling system with a 12 km horizontal grid resolution to generate daily 48-hr 

fne particulate matter (��2.5) forecasts for the Contiguous United States (CONUS) domain for June 1st through September 

29th (major wildfre season) during 2015-2021. We conduct CMAQ ofine simulations using meteorological inputs generated 

10 by the NOAA’s Unifed Forecast System (UFS) numerical weather prediction model. We have also included a Carbon Monoxide-

FIRE (�����) tracer in CMAQ, which tracks CO emitted by wildfres. we analyze the performance of the CMAQ ��2.5 and 

UFS meteorological forecasts over seven years of simulations for Environmental Protection Agency (EPA)-defned ten regions 

using the Air Quality System (AQS) ambient air pollution data from over a thousand monitoring sites across the CONUS. 

We have found that on average, the CMAQ model performs better in the eastern CONUS with the lowest Root Mean Squared 

15 Error (RMSE) (7-14 ��/�3) while in the west, where wildfres are prevalent, the model has the highest RMSE of up to 35 

��/�3. Next, we employ the state-of-the-art Analog Ensemble (AnEn) method to improve the accuracy of the forecasts and 

quantify the forecast improvements by AnEn. We also introduce two new predictors, i.e., a �� − �� �� tracer in the model, 

and the maximum observed ��2.5 concentrations from the previous day (��2.5 − ������ − ���). Despite the challenges of 

using AnEn for wildfres, we demonstrate that it has the potential to improve the CMAQ model forecast over the CONUS. 

20 We fnd that AnEn decreases the model RMSE by up to 25%, including additional 7% and 15% reduction by �� − ���� 

and ��2.5 − ������ − ��� predictors, respectively, at diferent forecast lead times. In addition, the correlation between AnEn 

1 

mailto:mgolbazi@ucar.edu


forecasts and observations is 20%-40% higher than that between CMAQ and observations. The Mean Bias Error (MBE) for 

AnEn forecasts is consistent and approximately -0.5 ��/�3 whereas CMAQ MBE varies between -1 and +1 ��/�3 between 

0-48 forecast hours. AnEn signifcantly improves the PM2.5 forecast results during its highest episodes. During the initial 

25 phases of wildfres, AnEn performs similarly to CMAQ. However, it soon catches up and decreases the error signifcantly. 

keywords: air quality forecasting, wildfres, analog ensemble, bias correction, 

1 Abbreviations 

AnEn = Analog Ensemble. 

AQS = Air Quality System. 

30 BEIS = Biogenic Emission Inventory System. 

BCON = Boundary Conditions Processor. CO = Carbon Monoxide. 

CMAQ = Community Multiscale Air Quality model. 

CSI = Critical Success Index. 

CONUS = Continuous United States. 

35 EPA = Environmental Protection Agency. 

FINN = Fire Inventory from NCAR. 

FV3 = Finite Volume Cubed 

ICON = Initial Conditions Processor. 

MAE = Mean Absolute Error. 

40 MBE = Mean Bias Error. 

MRW App = Medium-Range Weather Application. 

NACC = NOAA-EPA Atmosphere-Chemistry Coupler. 

NCAR = National Center for Atmospheric Research. 

NEI = National Emission Inventory. 

45 NOAA = National Oceanic and Atmospheric Administration. 

��2.5 = Fine Particulate Matter with a size smaller than 2.5 ��/�3. 

��2.5 − ����� = ��2.5 forecast by the model. 

��2.5 − ������ − ��� = maximum observed ��2.5 from the previous day measurements. 

RMSE = Root Mean Squared Error. 

50 SRW App = Short-Range Weather Application. 

UFS = Unifed Forecast System. 

WACCM = Whole Atmosphere Community Climate Model. 
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2 Introduction 

Air quality predictions provide decision-makers with a valuable tool to mitigate various risks associated with poor air quality. 

Nonetheless, the usefulness of these forecasts in the decision-making process may be limited due to the uncertainties involved 

in the predictions. Complete elimination of uncertainty in air-quality forecasting is not feasible. Nevertheless, there are efective 

methods to address the inevitable uncertainty and minimize its impact. Uncertainties in air quality forecasting can originate 

from meteorological inputs (Kumar et al. (2019); Ryu et al. (2018); Zhang et al. (2007)), numerical noise in the model (Ancell 

et al. (2018); Golbazi et al. (2022)), numerical approximations, errors in emission inputs (Foley et al. (2015)), etc. 

One way to characterize the uncertainty is to use ensembles instead of a single forecast model. Ensembles ofer several 

advantages; they provide probabilistic guidance that can be signifcantly more valuable for decision-making than a single 

forecast (Buizza (2008); Palmer (2002)). An ensemble’s mean forecast generally exhibits greater accuracy than any individual 

member’s prediction (Du et al. (1997); Ebert (2001); Galmarini et al. (2001); Djalalova et al. (2010)). McKeen et al. (2007) 

reported that a simple average of six models for the ��2.5 forecast referred to as the ensemble forecast outperformed each 

individual model. Similarly, in the 2006 Texas Air Quality feld campaign, Djalalova et al. (2010) found that combining Kalman 

fltering with weighted model averaging led to a more accurate forecast, resulting in a 43% decrease in the RMSE and a 62% 

increase in the correlation coefcient when compared to using other methods to generate ensembles or individual models. 

Probabilistic forecasts of weather variables can be generated using an ensemble of model runs with the members being 

diferent models (i.e., multi-model ensemble) (Zemouri et al. (2019); Ziehmann (2000)), having diferent initial conditions 

(Toth and Kalnay (1993); Molteni et al. (1996)), physics confgurations (i.e., multi-physics) (Stensrud et al. (2000)), and 

stochastic perturbations of the tendencies of physics parameterizations (Buizza et al. (1999)). In these cases, the uncertainty of 

predicting a meteorological variable is represented by the ensemble spread, defned as the standard deviation of the members 

about the ensemble mean. 

Alternatively, in a relatively new approach, the members of an ensemble are defned using statistical post-processing 

techniques such as the analog ensemble (AnEn) (Alessandrini et al. (2023, 2015); Hamill and Whitaker (2006); Delle Monache 

et al. (2013)). Delle Monache et al. (2011) developed a probabilistic weather prediction method using an Analog Ensemble 

(AnEn). The technique involves selecting historical weather patterns that are similar to the current conditions and using them 

to forecast future weather. The authors showed that this approach can capture the uncertainty of the forecasts and improve their 

accuracy, especially in regions with complex weather patterns while saving signifcant computational time. 

Analog ensemble estimates the probability distribution of future atmospheric conditions by comparing past observations that 

best match the current model forecasts (Delle Monache et al. (2020)). For instance, in Delle Monache et al. (2013), AnEn is used 

to make probabilistic predictions of wind speed and temperature over the contiguous United States, compared to observations 

from surface stations, and evaluated against a state-of-the-science Numerical Weather Prediction ensemble system. The study 

fnds that AnEn is consistent, reliable, captures fow-dependent behavior of errors, and performs similarly or better than other 

methods, such as logistic regression and ensemble model output statistics. Meanwhile, the AnEn has lower computational costs 

in real-time applications. 

3 



90

95

100

105

110

115

120

Recently, Alessandrini et al. (2018) successfully applied the AnEn method to tropical cyclone applications by constructing 

an AnEn from a database of Hurricane Weather Research and Forecast model forecasts and demonstrated that the forecasts 

of maximum sustained wind could be improved using a set of 6–8 predictor. Lewis et al. (2021) extended this work and 

derived an AnEn for the more specialized application of predicting tropical cyclone rapid intensity change, illustrating its 

efectiveness during a real-time test of the 2017 and 2018 Atlantic and Eastern Pacifc hurricane seasons. In other cases where 

the unpredictability of meteorological variables, such as total cloud cover, makes accurate solar power predictions crucial 

(Alessandrini et al. (2023); Alessandrini (2022)), the use of an analog ensemble method generated probabilistic solar power 

forecasts based on historical data sets. The AnEn method determined performance as well as the quantile regression technique 

for common events while exhibiting better performance for rare events and during hours with a low solar elevation. 

Meanwhile, in a review of the use of analogs to forecast the atmosphere, Weigel et al. (2008) discussed various methods for 

identifying historical weather patterns that are similar to the current conditions and using them to generate forecast ensembles. 

They showed that this approach can improve the accuracy of weather forecasts and provide valuable information on the 

uncertainty of the predictions. 

As discussed above, several studies have demonstrated the AnEn’s adaptability to a wide range of applications. These articles 

demonstrate the potential of analog ensembles in weather forecasting and ofer valuable insights into their implementation 

and calibration. By using historical weather patterns to generate forecast ensembles, it is possible to improve the accuracy 

and reliability of weather forecasts and better estimate their uncertainty. Recently, we extended the application of the AnEn 

algorithm to 48-hr daily air quality forecasts from the Community Multi-scale Air Quality (CMAQ) model and found that AnEn 

can drastically improve the accuracy of air quality forecasts under normal conditions over the CONUS (Delle Monache et al. 

(2020)). Here, we explore if AnEn can improve the accuracy of fne particulate matter (��2.5) forecasts during wildfres, which 

is a challenging task owing to large interannual variability in fre emissions that makes it hard to fnd analogous fre-afected 

conditions in the past. ��2.5 is a harmful air pollutant that consists of microscopic particles that can penetrate human lungs 

and even the bloodstream and cause serious health problems (U.S. Environmental Protection Agency (EPA) (2020)). It is one of 

the “criteria” pollutants that are regulated at the federal level by the U.S. EPA via the National Ambient Air Quality Standards 

(U.S. Environmental Protection Agency (EPA) (2022a)). We focus on the verifcation of the AnEn’s performance over the 

EPA-defned ten regions to assess regional variability in AnEn performance as a function of varying wildfre infuences. In 

order to monitor the dispersion of wildfre smoke throughout the domain, we have incorporated a �� − ���� tracer into the 

model. This tracer efectively traces the CO emitted by wildfres within the study area, serving as a reliable indicator of the 

smoke’s spread from the wildfres across the CONUS. 

3 Methods 

Air quality forecasts used in this study are based on the UFS-CMAQ modeling system. CMAQ is a Cartesian air quality model 

that simulates the concentrations of atmospheric pollutants at regional scales using meteorological inputs. We perform our 

simulations and analysis in the domain of the contiguous United States (CONUS) (Fig. 1). Here, the meteorological inputs are 
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a) 

b) 

Figure 1. Domain of the study (CONUS). a) The red dots are the observing stations from which we have used the observational data. The 

three stations in blue are the stations with the highest average ��2.5 levels over the study period (an indicator of wildfres), and b) the ten 

EPA-defned regions across the CONUS (https://www.nalms.org/2021nmc/12th-national-monitoring-conference-open-access-sessions/). 

provided using the National Oceanic and Atmospheric Administration (NOAA) Unifed Forecasting System (UFS) (Campbell 

et al. (2022)). ��2.5 forecasts at 0–48 hour lead times are created for 7 major wildfre seasons (June-September) of 2015 -

2021. 

We perform model performance analysis on the UFS-CMAQ modeling system. The model is evaluated against near-surface 

125 atmospheric concentrations of ��2.5 observed by the Air Quality System (AQS) network. Hourly averaged modeled ��2.5 

and meteorological parameters were paired in space and time with the hourly AQS observational data. Three statistical metrics 

are used to compare the observed and predicted hourly ��2.5 concentrations. The Mean Bias Error (MBE) is used to measure 

model bias. The RMSE is used as a measure of model random errors. The correlation coefcient is used to represent the 

covariation between the model and observations. 

5 
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Table 1. Details of the UFS-CMAQ model setup. 

Simulation period June 1st – Sept 30; 2015 – 2021 

Horizontal grid resolution 12 km 

Vertical layers 35 

UFS MRW App v1.0 UFS SRW App v2.1 

Initial/boundary conditions Global Forecasting System (GFS) 6-hourly, 36-km resolution 

LSM Noah-modifed 21-category IGBP-MODIS 

Shortwave radiation RRTMG shortwave 

Longtwave radiation RRTMG scheme 

Grid size 442 × 265 grid cells 

CMAQ version 5.3.2 

Chemistry Carbon bond 6 revision 3 

Aerosole module AERO7 

Meteorological inputs UFS model 

Anthropogenic emission data EPA/NEI 2017 

Biogenic emission data BEIS 

Fire emission data FINN v2.2 

Initial/boundary conditions ICON/BCON 

Grid size 315 × 300 grid cells 

130 3.1 UFS-CMAQ modeling system 

The meteorological felds that ofine drive the CMAQ model are generated at a horizontal grid spacing of 12 x 12 km2 using the 

Unifed Forecast System (UFS; https://ufscommunity.org/) Medium-Range (version 1.0) and Short-Range (version 2.1) Weather 

Applications. UFS is a community-based, coupled, comprehensive Earth modeling system developed by NOAA. UFS can be 

confgured in multiple applications depending on the spatial and temporal scale of the problem. UFS Medium-Range Weather 

135 Application (MRW App) allows prediction of global weather behavior while the Short-Range Weather Application (SRW App) 

allows predictions of regional weather behavior. Since the SRW App was not available at the beginning of this project, we 

simulated June-September of 2017-2020 using the MRW App. However, the large computational costs associated with running 

a global MRW App prevented us from running it for other years. Since Analog Ensemble is expected to work better with longer-

term training datasets, the release of the SRW App in the latter half of this project allowed us to simulate and include June-Sep 

140 of 2015, 2016, and 2021 in our study period. The UFS output cannot be directly supplied to CMAQ because UFS output is 

available on a Finite Volume Cubed Sphere (FV3) grid and CMAQ uses a Lambert conformal projection. Therefore, UFS output 

is mapped to the CMAQ domain through the NOAA-EPA Atmosphere-Chemistry Coupler (NACC) developed by Campbell et 

al. (2022). The CMAQ version 5.3.2 (U.S. Environmental Protection Agency (EPA) (2022b)) is confgured with a horizontal 
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grid spacing of 12 x 12 km2 with 442, 265 horizontal grid points in the longitudinal, and latitudinal directions, respectively, and 

35 levels in vertical. The model vertical grid stretches from the surface to 50 hPa. We employ the "��6�3 − ��7 − ��" chemical 

mechanism that uses Carbon Bond 6 version r3 for gas-phase chemistry and the AERO7 aerosol module for representing 

aerosol processes including secondary organic aerosols. Anthropogenic emissions for the year 2017 are based on the National 

Emission Inventory (NEI) for 2017 and are derived for the other years by applying EPA-reported annual state-wise trends 

to the NEI 2017 emissions (https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data). This 

emission inventory contains gridded 2D emissions that are released into each grid cell of the modeling domain near the surface 

(i.e., “area sources”, such as trafc or residential heating) and stack-specifc “point sources”, where each stack is assigned 

unique coordinates and parameters (i.e., smokestacks or ship chimneys), at a 12 km resolution. The anthropogenic emissions 

are distributed on a 442 times 265 grid, which covers the entire CONUS, with 35 layers in vertical. Fire emissions in CMAQ are 

represented using the Fire Inventory from NCAR (FINN) version 2.2 which provides daily varying global fre emissions at 1 x 

1 ��2 resolution. FINN emissions are processed through SMOKE to enable inline plume rise of fre emissions within CMAQ. 

Biogenic emissions are calculated online within the model using the Biogenic Emission Inventory System (BEIS). Based on 

the input emissions, the CMAQ model simulates the concentrations, pollution transport, and distribution of the pollutants using 

several complex physical and chemistry equations by incorporating the impacts of meteorology (input from the UFS model) and 

physical processes. The chemical boundary conditions are based on 6-hourly Whole Atmosphere Community Climate Model 

(WACCM) simulations. The WACCM output is mapped onto CMAQ grids using the Initial Conditions Processor (ICON) and 

Boundary Conditions Processor (BCON). WACCM output provides the chemical initial conditions to CMAQ only on the 1st of 

June of every year. The chemical initial conditions for all the remaining days are set by recycling the chemical felds from the 

previous forecast cycle. To track the infuence of wildfres on measurement stations, we have included a CO-FIRE tracer in the 

model which tracks the CO emitted by wildfres in the study domain and therefore is an indicator of the spread of the smoke 

from the wildfres across the CONUS. CO-FIRE is a chemically inert tracer that undergoes all the physical processes in the 

model as CO molecules do except for photo-chemistry. For each simulation day, we produced a 48-h forecast and saved hourly 

output for further analysis. The CMAQ output is collocated with AQS measurements using the “sitemap” utility of CMAQ. 

3.2 The Analog Ensemble method 

AnEn is a statistical-dynamical method that combines historical data and current predictions to generate an ensemble for 

increasing forecast accuracy. The method uses an archive of historical deterministic predictions paired with observations at 

those predictions’ valid times to train the model. AnEn determines which historical forecasts are analogous to the current 

forecast by using a metric developed by Delle Monache et al. (2011). We employ two distinct sets of historical data: the frst 

encompasses observed hourly ��2.5 values collected from around 800 AQS sites over a span of 7 years (2015-2022). The 

second set comprises hourly forecasts generated by the CMAQ model, spanning the same 7-year duration and encompassing 

the identical locations as the AQS sites. Fundamentally, both datasets align in both time and space, with one providing observed 

historical data and the other ofering forecasted values. Here, we use 10 analogous members. The best 10 analogs are chosen from 

each search of the archived datasets. The observations of ��2.5 verifying these selected 10 analogous forecasts represent the 10 
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members of the ��2.5 ensemble forecast. The optimal number of analogs (10 in this application) is based on a balance between 

sampling enough of the observed distribution while ensuring that all analogs are similar enough to the current prediction. In 

order to utilize AnEn for a forecast or estimation task, the initial requirement is to create a database comprising a sufcient 

number of entries (k) that adequately represent the phenomenon under consideration. The present-time model forecasts or 

analyses are subsequently compared to the elements in the database based on their resemblance to the features of the historical 

forecasts or analyses. This involves the identifcation of a set of predictors based on the model’s output, and generating an 

analog by minimizing the given expression (Alessandrini et al. (2023)): 

∑ � √ 
| |�, � | |� = �� /�� (�� − ���)2 , (1) 

�=1 

where C and H are the current and historical forecast analog of a predictor, N is the number of predictors, �� is the weight 

for each predictor, and �� is the standard deviation of that predictor in the historic data set. We used 6 years of data for the 

training process for every target year. We limit our target years to the years 2019, 2020, and 2021 since they had the highest 

history of large wildfres out of the 7 years. As already pointed out in (Alessandrini et al. (2019); Alessandrini (2022)), the 

AnEn introduces a positive bias when predicting the right tail of the forecast distribution. Here, the bias correction technique 

suggested by (Alessandrini (2022)) has been adopted to mitigate these biases. The forecasts in the distribution right tail are 

adjusted by adding a coefcient proportional to the diference between the target forecast and the mean of the analog forecasts. 

3.3 Weight optimization 

The AnEn approach is highly customizable, and several steps are involved in generating the weights, and analogs can vary 

depending on the specifc application. When running AnEn without weight optimization, the algorithm assigns a weight (�) of 

1 to all predictors which means treating them as of equal importance. With the weight optimization on, the algorithm searches 

for the best possible weight combinations for predictors at every observation station in order to minimize the model RMSE 

in the forecast results at that specifc station. As a result, the algorithm produces a fle with a size of � × � (where M is the 

number of stations in the study and N is the number of predictors), which contains a set of optimal weights for each station and 

predictor. To accomplish this, the original version of the algorithm makes use of the so-called “brute force” approach, assigning 

ten possible weights to each predictor, i.e. 0.0-1.0 with 0.1 increments, with the constraints that they add up to 1, and calculated 

the RMSE at each scenario at every station (Delle Monache et al. (2020)). It then assigned a single combination of weights to 

the predictors at which the RMSE for that observing station was the lowest. However, by adding new predictors, there exists 

millions of combinations to be tested to be able to pick the best combination which requires high computational power and time. 

To resolve this issue, we followed a similar approach as Alessandrini et al. (2018). We frst select the most important predictor 

(named �1, ��2.5 from CMAQ in this case) and compute the AnEn forecast based only on it and the forecast’s performance as 

RMSE of the mean of the 10 members. Then, each of the remaining �� − 1 predictors, �� , are tested one by one together with 

�1. For each pair, AnEn predictions are generated with all the possible weight combinations, using a weight increment of 0.1 

and the constraint (include sum equation to 1, see Alessandrini et al. (2018)). The pair resulting in the lowest RMSE determines 
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Figure 2. A schematic diagram of Analog Ensemble algorithm. 

the second predictor, �2, which is selected only if the improvement (decrease) of RMSE, compared to using �1 alone, is more 

than 1%. If �2 is chosen, the procedure is repeated to generate all possible triplets with the remaining NP - 2 predictors, along 

with �1 and �2. The procedure is interrupted when the increase in performance (decrease of RMSE), compared to the previous 

iteration, is lower than 1%. In this iterative procedure of weight selection, we added an additional constraint with respect to 

Alessandrini et al. (2018) to further limit the number of combinations to be tested. In fact, when testing a new predictor �� , 

only �� < �1 . . . ��−1 are tested. The selected set of predictors and their corresponding weights �� are used to generate the 

AnEn predictions over the verifcation dataset. The 1% threshold has been identifed as an optimal choice to detect statistically 

signifcant improvements regarding RMSE. For weight optimization, we use a two-year-long (242 days) training period for each 

target year. 

3.4 New Predictors 

Six predictors (from the model) have been already used in the literature and operations, i.e., the CMAQ modeled ��2.5, surface 

temperature, relative humidity, wind speed, wind direction, and the Planetary Boundary Layer (PBL) height (Delle Monache 

et al. (2020)). The importance of these meteorological predictors has been thoroughly studied in the literature Arya et al. (1999); 

Jacobson (2005). For instance, in a study by Li et al., the ��2.5 concentrations showed negative correlations with temperature, 

relative humidity (RH), and wind speed. Furthermore, they confrm that wind direction plays a signifcant role in infuencing 

��2.5 concentrations by determining the direction of dispersion. The fndings of that study underscore the crucial impact 

of meteorological factors on the aggregation, difusion, and spread of ��2.5. These factors hold particular sway over ��2.5 

concentrations in instances where domestic emissions remained stable (Li et al. (2017)). A separate study by Wang and Ogawa 

(2015) confrms the negative correlation between ��2.5 and temperature, as well as the critical role of the wind direction in 

pollution transport. However, they report that humidity and wind speed have threshold-dependent correlations with ��2.5, 

with the direction (positive or negative) related to whether their values were below or above the threshold. The PBL height, 
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on the other hand, depends on atmospheric stability which is crucial in pollution transport Arya et al. (1999). Our selection of 

predictors is based on similar studies. In addition to the six predictors, we have developed and evaluated two new predictors to 

further enhance post-processing performance in events with elevated atmospheric ��2.5 concentrations caused by wildfres. 

Specifcally, the frst new predictor is a modeled CO fre tracer (�� − ����) integrated into the CMAQ model, which tracks 

CO emissions from wildfres. The second new predictor is the maximum observed ��2.5 concentration for the previous day at 

every station, regardless of forecast hour. For instance, for a given 48-hour forecast on June 2nd, we calculated the maximum 

observed ��2.5 from AQS on June 1st and included this variable as a predictor in the AnEn algorithm. Our hypothesis is that, on 

days with highly polluted ��2.5 concentrations, which may indicate the presence of a potential wildfre nearby, the maximum 

observed ��2.5 from the previous day can indicate favorable analogous conditions for a fre event in the next 48 hours. Overall, 

the incorporation of these two new predictors is expected to improve the accuracy of our post-processing approach. The selection 

of predictors is strategic, enabling them not only to recognize past pollution episodes of comparable magnitude but also to 

identify the meteorological and chemical circumstances that contributed to previous air pollution incidents. To that end, since 

the focus of this project is wildfre events, we hypothesize that the two new predictors will help the algorithm detect the most 

analogous ensemble members and increase the accuracy of the forecasts. 

3.5 Measurement Data 

To obtain the necessary data for our study, we utilized on-site measurements from the Air Quality System (AQS) database (https: 

//aqs.epa.gov/aqsweb/airdata/download_fles.html#Raw). This database provides a comprehensive collection of air pollution, 

meteorological, and other relevant data from thousands of monitoring stations across the CONUS, and is operated by the EPA. 

We co-located the observed ��2.5 concentrations and other meteorological factors from over 2300 sites within our study 

domain, and after careful analysis, we selected 795 stations for our study. Our selection process was based on data availability 

and quality, ensuring that each site contained valid data for at least 50% of the time from 2019 to 2021 (the target study years). 

This approach allowed us to develop a diverse and robust database with a reasonable range of variability which is necessary for 

AnEn post-processing. The distribution of the selected stations is presented in Fig. 1. To co-locate the measured ��2.5 with 

the model, we extract the model data at the central mass point of every grid cell, which encompasses at least one of the AQS 

stations, at the exact hour that the measurement in that site has been made. 

4 Results and Discussion 

In this section, we will present the results of implementing AnEn on air quality forecasts generated by the CMAQ model. The 

results will be presented in four subsections. First, we will analyze the performance of the CMAQ model by evaluating its 

deterministic forecasts against on-site measurements from 795 observational sites located across the CONUS (see section 4.1). 

Once the shortcomings of the model outcomes and potential areas for improvement have been identifed, we will assess the 

performance of the AnEn algorithm over the study period using observational data collected from the same 795 measurement 

sites (see section 3.5). We limit our major analysis to our target years 2019, 2020, and 2021, since they had the highest history 
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of large wildfres out of the 7 years of simulations. Additionally, we will present the results of the AnEn sensitivity analysis for 

the two new predictors introduced in this study in section 3.3. Finally, we will present the results of the weight optimization 

carried out by AnEn and the signifcance of each predictor in bias-correcting the CMAQ results in each EPA region (see section 

4.2). We split our analysis to every geographic region defned by the EPA to understand the impacts of regional factors on 

model performance. We emphasize regions 8, 9, and 10, which experience high wildfre activity. These regions include the 

most wildfre-afected states such as California, Oregon, Colorado, and Washington. 

4.1 UFS-CMAQ model performance 

We studied the correlation between the model RMSE and �� − ���� . The results show that the model RMSE for ��2.5 is 

highly correlated with high episodes of �� − ���� (Fig. 3). This suggests that the model performs relatively poorly during 

wildfres. 

Figure 4 shows the Mean Bias Error (MBE) calculated at every station with valid data over the years 2019-2021 and is 

scattered across the country to illustrate the model error, spatially. The results indicate that, in general, the CMAQ model 

shows lower MBE with a tendency for a slight systematically overestimating ��2.5 concentrations at the eastern side of the 

CONUS in regions 2, 3, 4, and 5, with a few exceptions. Meanwhile, in western regions, the model shows overestimation and 

underestimation of ��2.5 in the years 2019 and 2020-2021, respectively. The years 2020 and 2021 were important years for 

wildfre activities (https://www.nifc.gov/fre-information/statistics/wildfres) in the west and it is when we detect a signifcant 

underestimation of ��2.5 in the western CONUS (Fig. 4). The underestimation of ��2.5 in the west is an indicator that the 

CMAQ deterministic forecasts do not capture the high ��2.5 episodes that could potentially be due to the wildfres in these 

regions. On the other hand, the slight overestimation on the east may be due to an overestimation of westerly wind speeds in 

the model which can result in an exaggerated transport of fre smoke towards the eastern regions of the country, creating an 

overestimation in the east and a more pronounced underestimation in the west. By referencing Figure 6b in the paper, in which 

we examine the performance of the UFS model, we can reasonably conclude that the model indeed overestimates wind speeds, 

which could be a reason for the overestimated ��2.5 values on the east. 

Amongst all EPA regions (see region defnition here: https://www.epa.gov/aboutepa/regional-and-geographic-ofces), the 

model performs the best in region 2 with the lowest RMSE value and it has the highest RMSE for regions 1, 9, and 10 (Fig. 

S2). This is important since our focus is mostly on the latter regions (9 and 10). In addition to regional analysis, we show 

the model MBE and RMSE calculated at every station versus the station longitude in fgure 5a-b. It is clear that the model 

indicates signifcantly higher RMSE and a more negative MBE (an underestimation) in stations located on the western side of 

the CONUS. In terms of the error diurnal cycle, we fnd a systematic underestimation of ��2.5 concentrations between hours 

15:00-24:00 UTC and 39:00-48:00 (UTC) of the forecast time (daytime in all time zones) and a systematic overestimation 

between hours 05:00-15:00 UTC and 30:00-40:00 UTC (mostly nighttime in all regions) meaning that CMAQ bias follows a 

diurnal cycle as expected. 

11 

https://www.nifc.gov/fire-information/statistics/wildfires
https://www.epa.gov/aboutepa/regional-and-geographic-offices


Figure 3. The relationship between the ��2.5 RMSE from CMAQ forecasts (on the left axis in black), and �� − ���� (on the right axis in 

red). The Y axis is in logarithmic scale. The text on each plot shows the correlation coefcient between the RMSE and �� − �� �� at every 

region when �� − �� �� was higher than the 90th percentile value. The higher the correlation coefcient, the worse the model performance. 

295 In addition to the CMAQ model, we evaluated the meteorological inputs created by the UFS model. Specifcally, we analyzed 

the model performance for three variables - surface temperature, 10-m wind speed, and relative humidity - as we believe these 

variables play a critical role in determining ��2.5 concentrations. Our results are presented in Fig. 6. We found that surface 

temperature and relative humidity exhibit strong correlations with the observations across all regions and sites, and at all 

forecast times (with the exception of region 7, where relative humidity is slightly overestimated). In contrast, the performance 

300 of the 10-m wind speed input showed a diferent pattern. We observed an overestimation of wind speed at almost all regions, 

except for region 10 where there was a slight underestimation. The overestimation in wind speed can eventually lead to an 

underestimation of ��2.5 in those sites. 

4.1.1 AnEn weight optimization 

In this section, we discuss weight optimization by AnEn. In this regard, we highlight the signifcance of the eight predictors 

305 utilized in this study in enhancing the model outcomes. To evaluate the importance of each predictor, we analyze the statistical 

distribution of the weights generated by AnEn in ten EPA regions. This allows us to examine the relevance of each predictor 

in regions with specifc characteristics. We are particularly interested in examining the impact of the two new predictors on 

correcting CMAQ forecasts in regions with a high incidence of wildfres. Our fndings are presented in Fig. 4.1.1, where we 

observe that the ��2.5 predictor (from the model forecast) has the greatest impact, as anticipated, in all regions. Interestingly, 
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Figure 4. Mean Bias Error for forecasted ��2.5 from the CMAQ model, calculated at every station across forecast hours (25-48) and all 

simulation days in every year. Blue shades represent an underestimation while red shades represent an overestimation in predictions. 

310 in addition to ��2.5, both �� − ���� and ��2.5 − ������ − ��� have the two highest weights in regions 7, 8, 9, and 10, 

making them two of the most critical predictors employed in our bias correction. The role of surface temperature in predicting 

��2.5 concentrations is particularly signifcant in regions 1 and 2 where wildfres are scarce. This fnding is consistent with 

expectations. However, our analysis indicates that, among all the predictors considered, wind speed and PBL height tend to have 
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a) b) 

c) 

Figure 5. CMAQ model performance for ��2.5; a) calculated MBE at every station scattered based on the station longitude, b) same as 

(a) but for the RMSE, and c) the RMSE calculated in ten EPA regions where each line represents the RMSE calculated across all days and 

stations in that specifc region. 

the lowest weights across most regions. Future studies may choose to prioritize the use of predictors that have a greater impact 

315 on their study parameters. In our analysis, we decided to include all 8 predictors, as we believe that each one of them could 

potentially afect ��2.5 concentrations in the atmosphere. The selection of predictors is strategic in that they not only enable 

the identifcation of past pollution episodes of similar magnitude but also facilitate the identifcation of the meteorological and 

chemical conditions that have led to such episodes in the past. 
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a) b) c) 

Figure 6. Meteorological input evaluation for the UFS model for a) surface temperature, b) 10m wind speed, and c) relative humidity. Diferent 

colors illustrate diferent EPA regions. 

Figure 7. Weights assigned to each predictor by AnEn weight optimization algorithm, for each EPA region. The EPA regions have been 

defned in US. EPA (2023) 
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4.1.2 AnEn predictors 

In this section, we assess the impact of the two novel predictors, �� − �� �� and ��2.5 − ������ − ���, on the performance 

of the AnEn algorithm. We observe that both of the new predictors, �� − ���� and ��2.5 − ������ − ���, have a signifcant 

positive efect on the AnEn’s performance. To evaluate their importance, we frst applied AnEn on CMAQ outputs with the six 

predictors used in previous studies (referred to as "AnEn-6prdctr"). We then introduced �� − ���� and ��2.5 − ������ − ��� 

as the 7th and 8th predictors, respectively, and tested the performance of the algorithm in two additional scenarios referred 

to as "AnEn-7prdctr" and "AnE-8prdctr". To be consistent with the main AnEn run (“AnEn-8prdctr”), the sensitivity of the 

results to both predictors was assessed by using weight optimization in all test runs. In terms of overall RMSE, which was 

calculated over all stations and days in the study period at every forecast hour, the raw CMAQ forecasts showed the highest 

RMSE compared to any other scenario that included AnEn-corrected results. AnEn with traditional 6 predictors decreased 

the RMSE by up to 8% at maximum. When the "AnEn-7prdctr" scenario was run, which included �� − ���� as the new 

predictor, the RMSE decreased by another 6-8%, resulting in a 12% reduction in RMSE compared to the raw CMAQ forecasts. 

This indicates that the newly added �� − ���� predictor decreased the overall RMSE and improved AnEn performance across 

all forecast hours. The fnal run used in this study, "AnEn-8prdctr", included the ��2.5 − ������ − ��� predictor as the 8th 

predictor in the AnEn post-processing. The results showed that the ��2.5 − ������ − ��� predictor decreased the RMSE by an 

additional 15%, at maximum (Fig. 8). The results indicated that AnEn with 8 predictors, including the newly added predictors, 

consistently and signifcantly lowered the overall RMSE of the CMAQ forecasts, reducing it by up to 4.5 ��/�3 (25%). The 

correlation coefcient follows a similar trend to the RMSE, with CMAQ exhibiting the lowest correlation with the observations. 

However, both "AnEn-6prdctr" and "AnEn-7prdctr" improved the correlation coefcient, with increases of up to 12% and 22%, 

respectively. The "AnEn-8prdctr" scenario demonstrated the highest correlation coefcient, with an increase of up to 40%. As 

for the MBE, "AnEn-6prdctr" and "AnEn-7prdctr" show comparable results to "AnEn-8prdctr," although "AnEn-7prdctr" has 

a slightly higher underestimation of 0.03 ��/�3. 

4.2 AnEn implementation 

We use 8 predictors, including two new predictors, and a six-summer period of training time (726 days) for each study year to 

create AnEn corrected forecasts. We have found that AnEn outperforms the deterministic raw forecasts of the CMAQ model 

with a lower RMSE in all regions. As shown in Fig. 10a AnEn decreased the RMSE by up to 25% at every lead time. We present 

the relationship between the daily averaged ��2.5 observations and ��2.5 forecasts from CMAQ and AnEn in fgure 9, where 

we fnd a signifcant increase in �2 with AnEn corrected forecasts (�2 = 0.8) compared to CMAQ raw forecasts (�2 = 0.2). In 

addition, in Figures S1-S4, we provide a separate analysis of AnEn’s performance for each EPA region. In this study, we will 

denote special attention to regions 8, 9, and 10, which have a higher history of wildfres. The largest decrease in RMSE due 

to AnEn was observed in regions 9 and 10 (as shown in Fig. S1, and Fig. S2) during the months of August and September, 

which are typically associated with higher wildfre activity. Conversely, the lowest reduction in RMSE was observed in June. 

The AnEn bias is more dampened compared to the bias in CMAQ (Fig. 10b). CMAQ bias shows a diurnal cycle, while AnEn 
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eliminates diurnal error variations because AnEn uses observations corresponding to each hour of a day to correct CMAQ 

forecasts at each lead time independently. Consequently, the AnEn bias is more consistent and shows an overall underestimation 

of approximately 0.5 ��/�3 while CMAQ MBE varies between -1 to +1.2 ��/�3. It is evident that the correlation coefcient 

355 between AnEn and AQS is consistently higher than that between CMAQ and AQS at all forecast times ( 20%-40% higher 

correlation depending on forecast time), as shown in Fig. 10c. Figures 8 and 10 provide a comprehensive overview of the 

model’s performance, illustrating a recurring diurnal pattern in the model RMSE across the entire domain, containing four 

diferent time zones. The plots show that the model consistently performs at its best from 10:00 to 20:00 UTC, indicated by 

the lower RMSE (Figure 8) and MBE (Figure 10) values on each forecast day. Despite the presence of four distinct time zones 

360 within the domain, the periods of low RMSE on these charts consistently correspond to the early morning and daytime hours 

across all regions and time zones. On the other hand, the hours with higher RMSE and MBE values consistently align with 

nighttime hours in all four time zones. This consistent pattern suggests that the model has a better performance during daytime 

hours while displaying a poor performance during nighttime hours when predicting PM2.5 values. The three statistical metrics 

used, namely the RMSE, MBE, and correlation coefcient, all provide clear evidence that AnEn signifcantly improves the 

365 accuracy of ��2.5 forecasts. 

Figure 8. ��2.5 RMSE vs. forecast lead time for CMAQ (black), AnEn with previously used 6 predictors (green), AnEn with 7 predictors 

including new �� − �� �� predictor (blue), and AnEn with 8 predictors including ��2.5 − ������ − ��� (red). Calculations are averages 

over all sites during the periods of study described in the text. 

The concentrations of the ��2.5 forecasts by CMAQ and AnEn are compared to observations in Fig. 11a, where, we detect a 

better match between AQS and AnEn especially in high ��2.5 bins. Figure 11b depicts the time series of daily RMSE (red) and 

MBE (blue) calculated in the study period, with the left and right axes representing the respective values. Notably, the RMSE 
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Figure 9. ��2.5 observations vs ��2.5 forecasts; black dots represent the CMAQ deterministic forecasts and pink dots are the AnEn 

corrected forecasts. The dots represent daily averaged data at every forecast hour and observing site. 

has decreased signifcantly for all days in the simulation period using AnEn. In terms of MBE, AnEn performs better overall, 

370 although a few days exhibit a slight increase. The shaded areas represent the error range between the 33rd and 67th percentile 

of the error data, and the fgure highlights that this range is narrower with AnEn than with CMAQ raw forecasts. Figure 11 

represents the AnEn performance based on all stations across the CONUS. It provides a general look into AnEn’s performance 

regardless of the location. However, we expand this analysis later in 12, by zooming into three individual wildfre cases in three 

stations located in California (shown in blue in Figure 1a). We study these stations during the fre period (from start to fnish), 

375 specifc to each station. 

In Figure S5, we present the ��2.5 levels only on days when ��2.5 observed levels exceeded the 80th percentile. We compare 

��2.5 levels from AQS measurements, CMAQ forecasts, and forecasts after AnEn post-processing. Our fndings indicate that 

the AnEn-corrected ��2.5 values during potential wildfre days are more consistent with the measured values. While AnEn 

and AQS match best during days with lower ��2.5 concentrations, AnEn still signifcantly improves the ��2.5 forecast results 

380 during the highest ��2.5 episodes. To further analyze this, we created a contingency table (2) to assess the model’s ability to 

predict ��2.5 during wildfres in regions 8, 9, and 10. We assumed that events with observed ��2.5 concentrations exceeding 
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a) 

b) 

c) 

Figure 10. RMSE (top), bias (middle), and correlation (bottom), of ��2.5 vs. lead time in forecasts from CMAQ (black), AnEn mean (red). 

Calculations are averages over all sites during the periods of study described in the text. 
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100 ��/�3 represent wildfre incidents. Fig. 5 summarizes these results. In the contingency table, a "Hit" occurs when both 

observed and model events are "YES," indicating that the model predicted the event correctly. If the event-observed and model 

are both ‘NO’, it is a ‘correct non-event’ meaning that the model predicted correctly that it is not a high ��2.5 day. On the 

385 other hand, if the event observed is ‘YES’ and the model is ’NO’, it is a ‘Miss’, suggesting that the model failed to predict the 

event. Similarly, if the observed event is "NO," and the model is "YES," it is a "False Alarm," suggesting that the model falsely 

predicted a high ��2.5 episode. 

Figure 2 shows that AnEn outperformed CMAQ in detecting high ��2.5 episodes during wildfres, as indicated by signifcantly 

higher numbers of hits in all three regions (more than doubled hits). Additionally, AnEn showed lower numbers of missed 

390 events than CMAQ in all three regions. However, CMAQ demonstrated a better performance in avoiding false alarms, with 

lower rates of "False Alarms" compared to AnEn in all three regions. This can be due to the fact that, in a decreasing ��2.5 

trend after a high episode, AnEn takes a day or two to be trained and capture the trend and therefore reports higher values than 

the observations. The Critical Success Index (CSI) is calculated for CMAQ and AnEn separately at each region. The CSI is a 

verifcation measure of categorical forecast performance, and it is equal to the total number of hits divided by the total number 

395 of storm forecasts plus the number of misses (hits + false alarms + misses) (Wilks (2011)). The CSI indicates that the AnEn is 

outperforming CMAQ in all three regions by more than the double CSI. 

Table 2. Contingency table; green cells indicate the number of times that the model (CMAQ or AnEn) predicted an event correctly by either 

detecting that PM2.5 was higher or lower than 100 g/m3 (here, considered as a threshold for wildfre indication). The red cells indicate the 

number of times that the model either missed a high PM2.5 event or predicted a high PM2.5 event falsely. 

Event Observed 

YES NO CSI 

CMAQ YES 93 65 0.09 

NO 855 377505 

Region 8 YES 219 113 0.2 

AnEn NO 729 377457 

CMAQ YES 815 1121 0.07 

NO 8735 918273 

Region 9 YES 1854 1839 0.16 

AnEn NO 7696 917553 

CMAQ YES 1534 320 0.11 

NO 11337 660341 

Region 10 YES 3760 1371 0.26 

AnEn NO 9112 659290 
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We have utilized high episodes of ��2.5 observations as well as �� − �� �� as indicators of potential wildfres in our study. 

For most regions, AnEn corrected ��2.5 values match the observations very well, while there is a clear under/overestimation 

of the ��2.5 values by CMAQ based on the region. However, in western regions, the results are not as close to observations 

400 as in other regions. This is due to the challenges associated with predicting ��2.5 levels in areas afected by wildfres, which 

can result in large and sudden increases in ��2.5 levels. Next, we will take a closer look at the stations in western CONUS that 

were impacted by the wildfres during the study period. 

a) 

b) 

Figure 11. a) ��2.5 concentrations for AQS, CMAQ, and AnEn in green, blue, and red stairs, respectively. b) The RMSE and MBE time 

series. The left axis in red is MBE and the right axis (logarithmic scale) in blue is RMSE for CMAQ in solid lines and AnEn in dashed 

lines. The shaded area is the error range between the 33rd and 67th percentile (centered at 0). AnEn (in the pink shade) has a narrower range 

compared to CMAQ. 

Case Study: 
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We analyzed the AnEn performance in three stations with the highest average concentrations of ��2.5 and �� − ���� over 

405 time, assuming they represent locations of signifcant wildfres during the study period. These stations are located in California, 

as depicted in blue in Fig. 1. ��2.5 concentrations for each day at each of the three stations are illustrated in Fig. 12, which 

zooms in on days with the highest observed ��2.5 concentrations at each station, confrmed to be representative of wildfres. 

The ��2.5 values are the averages over the forecast hours for each day. The AnEn algorithm improved the forecast accuracy 

at these stations during wildfres. We observed a consistent pattern in AnEn performance across all three stations: the RMSE 

410 decreased by up to 300 ��/�3 (in station one, not shown) during peak concentrations. It is clear in Fig. 12 that the AnEn 

predicted values are closer to the observed concentrations in the peaks. Initially, the AnEn showed a similar pattern to the 

CMAQ model when ��2.5 began an increasing trend. However, after approximately one day, the AnEn algorithm caught up 

and signifcantly reduced the RMSE, indicating an increase in forecast accuracy. MBE exhibited a similar pattern, with AnEn 

reducing both MBE and RMSE during the highest episodes of ��2.5. Nevertheless, on some days, the MBE was higher than 

415 the CMAQ forecasts (not shown). 
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Figure 12. ��2.5 concentrations averaged over forecast lead times in three selected stations for AQS, CMAQ model), and AnEn in solid 

black, solid red, and dashed red lines, respectively. These three stations had the highest average ��2.5 levels in the entire domain and all 

three stations are located in California (shown in blue dots in Fig. 1) 

5 Conclusions 

Air quality forecasts provide valuable information for the control of air pollution; however, the accuracy of the forecasts is only 

sometimes favorable, and it is extremely challenging to produce good forecasts of pollutants during extreme events such as 

wildfres. In this study, we created 48-hour PM2.5 forecasts over the CONUS for seven consecutive major fre seasons (June 

420 1st to Sep 29th) during 2015-2021 using the UFS-CMAQ modeling system with a resolution of 12 x 12 km2 with 442, 265 

grid cells horizontally, and 35 grid points, vertically. We included a �� − ���� tracer in the model to track the CO emitted by 

wildfres in our domain and we co-located the CMAQ outputs with the measurements from the AQS from 795 stations across our 

domain. Our research body is divided into three main parts. First, we assess the accuracy of the deterministic forecasts produced 

by the CMAQ model. Next, we contribute to the feld by pioneering the application of the state-of-the-art Analog Ensemble, 
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a statistical-dynamical post-processing method, to explore potential improvements to forecast accuracy during wildfres while 

incorporating a tracer to precisely trace the fre smoke, and eventually and in parallel to the second objective, for the frst time, 

we introduce two novel predictors and we test their ability and importance in enhancing the forecast accuracy as is the ultimate 

goal of this study. Our investigation focused on ��2.5 concentrations since it is one of the most related pollutants to wildfres. 

The two new predictors are �� − �� �� from the model and ��2.5 − ������ − ���, which is the maximum observed ��2.5 

value from the previous day and is obtained from the observations. We devote special attention to the western part of CONUS, 

including EPA regions 8, 9, and 10 which experience the highest wildfre activity. 

Upon evaluating the CMAQ deterministic forecasts with AQS observations, we found a high bias in the model outputs, 

especially a signifcant underestimation in the western CONUS during the years with active wildfres. This means that the 

model did not properly capture the increase in ��2.5 values during the extreme events. We post-processed the data with AnEn 

using 8 predictors, including the six predictors that are already used in the operations, plus two new predictors introduced here, 

and a six-summer period of training period (726 days) for each study year and weight optimization by AnEn, which assigns the 

optimal weights to the defned predictors. 

We fnd that AnEn increases model accuracy by decreasing the RMSE, increasing the forecast correlation with observations, 

and increasing/decreasing the model bias in diferent lead times. Similar to the CMAQ deterministic forecasts, AnEn matches 

best with AQS data during days with low ��2.5 concentrations (with signifcant improvement over CMAQ) and signifcantly 

improves the ��2.5 forecast results during the highest ��2.5 episodes. The model RMSE decreased by up to 25% when 

considering all stations across the domain. In stations with wildfre events, the RMSE decreased by up to 300 ��/�3. In 

addition, the correlation between AnEn forecasts and observations was 20% - 40% higher than that between CMAQ and 

observations. When looking at the ��2.5 trend during wildfres, AnEn performs similarly to CMAQ in the initial phase of a fre 

event, but it soon catches up and decreases the error signifcantly. In addition, we fnd that the two new predictors introduced in 

this study (�� − ���� and ��2.5 − ������ − ���), along with the predictor ��2.5 − ����� (obtained from the model) have 

the highest weights in correcting the model outputs, especially in regions with high wildfre risks. 

This pioneering efort provides valuable insights to the atmospheric science community and will guide future research 

endeavors in this domain. Nonetheless, there is still scope for future studies to improve the forecast accuracy further. In a 

forthcoming study, we will expand upon this research by incorporating advanced techniques to interpolate observations across 

the entire domain, rather than solely relying on the stations utilized in this current study. This extended investigation will 

encompass the application of AnEn to the complete domain, beyond just the observational station locations. Additionally, it 

will explore an in-depth examination of various techniques for data interpolation and assess their impact on the performance of 

AnEn. 
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SUPPLEMENTARY INFORMATION 

This appendix contains additional fgures from the study domains as well as some defnitions that are used in our methods 

section. 

Correlation Coefcient: 

550 (�,� ) = ���(�,� )/[��� (�) × ��� (� )]1/2 

Error : 

� = �� − �� , 

where A is the AnEn outputs and O is the observations. 

RMSE : 

555 ���� = 1/� 
Í 
� = 1� (�� − �� )2 

MBE : 

��� = 1/� 
Í 
� = 1� ( �� − �� ) 

STD : 

�� � = 1/(� − 1)� = 1� | �� − � |2 , 

560 Where, 

� = 1/�� = 1� 
Í 
�� 
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Figure S1. The changes in RMSE at every region and month. The more negative changes (darker colors) show better results since it means 

that the RMSE has decreased the most in that scenario. 
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Figure S2. RMSE for CMAQ deterministic forecasts in black, and for AnEn corrected forecasts in red, calculated over all stations within each 

region during the study time. 
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Figure S3. Same as Fig. S2, but for Mean Bias Error. 
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Figure S4. Same as Fig. S2, but for Correlation Coefcient. 
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Figure S5. ��2.5 concentrations on days when observed ��2.5 levels exceeded the 80th percentile in regions 8, 9, and 10. ��2.5 levels 

from AQS measurements, CMAQ forecasts, and forecasts after AnEn post-processing are shown in black, blue, and red lines, respectively. 
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